Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
उत्तर
Let `x/((x - 1)(x - 2)(x - 3))`
`= A/(x - 1) + B/(x - 2) + C/(x - 3)`
⇒ x = A(x - 2) (x - 3) + B(x - 1) (x - 3) + C(x - 1) (x - 2) …(1)
Putting x = 1 in (i), we get
1 = A(1 - 2) (1 - 3)
⇒ A = `1/2`
Putting x = 2 in (i), we get
2 = B (2 - 1) (2 - 3)
⇒ B = - 2
Putting x = 3 in (i), we get
3 = C(3 - 1) (3 - 2)
⇒ C = `3/2`
`therefore x/((x - 1)(x - 2)(x - 3))`
`= 1/(2(x - 1)) - 2/(x - 2) + 3/(2(x - 3))`
`= int x/((x - 1)(x - 2)(x - 3))` dx
`= 1/2 int 1/(x - 1) dx - 2 int 1/(x - 2) dx + 3/2 int 1/(x - 3) dx`
`= 1/2 log (x - 1) - 2 log (x - 2) + 3/2 log (x - 3) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
`int (dx)/(x(x^2 + 1))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int 1/("x"("x"^5 + 1))` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int 1/(x(x^3 - 1)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int (sinx)/(sin3x) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate `int x log x "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`