Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
उत्तर
Let `x/((x - 1)(x - 2)(x - 3))`
`= A/(x - 1) + B/(x - 2) + C/(x - 3)`
⇒ x = A(x - 2) (x - 3) + B(x - 1) (x - 3) + C(x - 1) (x - 2) …(1)
Putting x = 1 in (i), we get
1 = A(1 - 2) (1 - 3)
⇒ A = `1/2`
Putting x = 2 in (i), we get
2 = B (2 - 1) (2 - 3)
⇒ B = - 2
Putting x = 3 in (i), we get
3 = C(3 - 1) (3 - 2)
⇒ C = `3/2`
`therefore x/((x - 1)(x - 2)(x - 3))`
`= 1/(2(x - 1)) - 2/(x - 2) + 3/(2(x - 3))`
`= int x/((x - 1)(x - 2)(x - 3))` dx
`= 1/2 int 1/(x - 1) dx - 2 int 1/(x - 2) dx + 3/2 int 1/(x - 3) dx`
`= 1/2 log (x - 1) - 2 log (x - 2) + 3/2 log (x - 3) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
`int (dx)/(x(x^2 + 1))` equals:
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int 1/(sinx(3 + 2cosx)) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Evaluate: `int (dx)/(2 + cos x - sin x)`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate`int(5x^2-6x+3)/(2x-3)dx`