हिंदी

Integrate the following w.r.t. x : 1sinx+sin2x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`

योग

उत्तर

Let I = `int (1)/(sinx + sin2x)*dx`

= `int (1)/(sinx + 2sinx cosx)*dx`

= `int dx/(sinx(1 + 2 cosx)`

= `int (sinx*dx)/(sin^2x(1 + 2cosx)`

= `int (sin*dx)/((1 - cos^2x)(1 + 2 cosx)`

= `int (sin*dx)/((1 - cosx)(1 + cosx)(1 + 2cosx)`
Put cos x = t
∴ – sinx . dx = dt
∴ sinx .dx = –  dt

∴ I = `int (-dt)/((1 - t)(1 + t)(1 + 2t)`

= `-int (dt)/((1 - t)(1 + t)(1 + 2t)`

Let `(1)/((1 - t)(1 + t)(1 + 2t)) = "A"/(1 -  t) + "B"/(1 + t) + "C"/(1 + 2t)`

∴ 1 = A(1 + t)(1 + 2t) + B(1 – t)(1 + 2t) + C(1 – t)(1 + t)
Putting 1 – t = 0, i.e. t = 1, we get
1 = A(2)(3) + B(0)(3) + C(0)(2)
∴ A = `(1)/(6)`
Putting 1 – t = 0, i.e. t = – 1, we  get
1 = A(0)(– 1) + B(2)(– 1) + C(2)(0)
∴ B = `-(1)/(2)`
Putting 1 + 2t = 0, i.e. t = `-(1)/(2)`, we get

1 = `"A"(0) + "B"(0) + "C"(3/2)(1/2)`

∴ C = `(4)/(3)`

∴ `1/((1 - t)(1 + t)(1 + 2t)) = ((1/6))/(1 - t) + (((-1)/2))/(1 + t) + ((4/3))/(1 + 2t)`

∴ I = `int [((1/6))/(1 - t) + (((-1)/2))/(1 + t) + ((4/3))/(1 + 2t)]*dt`

= `-(1)/(6) int (1)/(1 - t)*dt + 1/2 int 1/(1 + t)*dt - 4/3 int 1/(1 + 2t)*dt`

= `-(1)/(6)*(log |1 - t|)/(-1) + 1/2log|1 + t| - 4/3*(log|1 + 2t|)/(2) + c`

= `-(1)/(6)log|1 - cosx| + 1/2log|1 + cosx| - 2/3log|1 + 2 cosx| + c`

= `(1)/(2)log|cosx + 1| + (1)/(6)log|cosx - 1| - (2)/(3)log|2cosx + 1| + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.4 [पृष्ठ १४५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.4 | Q 1.18 | पृष्ठ १४५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`(x^3 + x + 1)/(x^2 -1)`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Evaluate : `∫(x+1)/((x+2)(x+3))dx`


Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int sqrt(4^x(4^x + 4))  "d"x`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int x^3tan^(-1)x  "d"x`


`int (sin2x)/(3sin^4x - 4sin^2x + 1)  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


Evaluate `int x log x  "d"x`


`int x/((x - 1)^2 (x + 2)) "d"x`


If `int(sin2x)/(sin5x  sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate.

`int (5x^2 - 6x + 3) / (2x -3) dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×