Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
उत्तर
Let `I = int (2x)/((x^2 + 1)(x^2 + 3))` dx
Putting x2 = t, 2x dx = dt
`therefore I = int dt/((t + 1)(t + 3))`
Now, `1/((t + 1)(t + 3)) = A/(t + 1) = B/(t + 3)`
1 = A(t + 3) + B(t + 1)
Put t = -1
1 = A(-1 + 3)
⇒ 1 = 2A
∴ A `= 1/2`
Put t = -3
1 = B (-3 + 1)
⇒ 1 = -2B
∴ B `= -1/2`
`therefore 1/((t + 1)(t + 3)) = 1/(2(t + 1)) - 1/(2(t + 3))`
`therefore I = int 1/((t + 1)(t + 3)) dt = 1/2 int 1/(t + 1) dt - 1/2 int 1/(t + 3) dt`
`= 1/2 log (t + 1) - 1/2 log (t + 3) + C`
`= 1/2 log abs ((t + 1)/(t + 3)) + C`
`= 1/2 log abs ((x^2 + 1)/(x^2 + 3)) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`2/((1-x)(1+x^2))`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int 1/(2 + cosx - sinx) "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int x^2"e"^(4x) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
`int 1/(x^2 + 1)^2 dx` = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`