Advertisements
Advertisements
प्रश्न
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
उत्तर
Let I = `int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
Let 3e2t + 5 = `"A"(4"e"^(2"t") - 5) + "B" "d"/"dt"(4"e"^(2"t") - 5)`
= 4Ae2t – 5A + B(8e2t)
∴ 3e2t + 5 = (4A + 8B) e2t – 5A
Comparing the coefficients of e2t and constant term on both sides,
we get 4A + 8B = 3 and – 5A = 5
Solving these equations,
we get A = – 1 and B = `7/8`
∴ I = `int (-1(4"e"^(2"t") - 5) + 7/8(8"e"^(2"t")))/(4"e"^(2"t") - 5) "dt"`
= `/int "dt" + 7/8 int (8"e"^(2"t"))/(4"e"^(2"t") - 5) "dt"`
∴ I = `-"t" + 7/8 log|4"e"^(2"t") - 5| + "c"` ......`[because int ("f'"(x))/("f"(x)) "d"x = log|"f"(x)| + "c"]`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
`int 1/(x(x^3 - 1)) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int (dx)/(2 + cos x - sin x)`