Advertisements
Advertisements
प्रश्न
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
उत्तर
Let I = `int ("x"^2 + "x" − 1)/("x"^2 + "x" − 6)` dx
`= int(("x"^2 + "x" − 6) + 5)/("x"^2 + "x" − 6)` dx
`= int [("x"^2 + "x" − 6)/("x"^2 + "x" − 6) + 5/("x"^2 + "x" − 6)]` dx
`= int [1 + 5/("x"^2 + "x" − 6)]` dx
`int [1 + 5/(("x + 3")("x − 2"))]` dx
Let `5/(("x + 3")("x − 2")) = "A"/"x + 3" + "B"/"x − 2"`
∴ 5 = A(x − 2) + B(x + 3) ....(i)
Putting x = 2 in (i), we get
5 = A (0) + B (5)
∴ 5 = 5B
∴ B = 1
Putting x = − 3 in (i), we get
5 = A(− 5) + B (0)
∴ 5 = − 5A
∴ A = − 1
∴ `5/(("x + 3")("x - 2")) = (-1)/"x + 3" + 1/"x − 2"`
∴ I = `int [1 + (-1)/"x + 3" + 1/"x − 2"]` dx
`= int "dx" - int 1/"x + 3" "dx" + int1/"x − 2"` dx
∴ I = x − log |x + 3| + log |x − 2| + c
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`1/(x^2 - 9)`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int x^3tan^(-1)x "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`