Advertisements
Advertisements
Question
Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx
Solution
Let I = `int ("x"^2 + "x" − 1)/("x"^2 + "x" − 6)` dx
`= int(("x"^2 + "x" − 6) + 5)/("x"^2 + "x" − 6)` dx
`= int [("x"^2 + "x" − 6)/("x"^2 + "x" − 6) + 5/("x"^2 + "x" − 6)]` dx
`= int [1 + 5/("x"^2 + "x" − 6)]` dx
`int [1 + 5/(("x + 3")("x − 2"))]` dx
Let `5/(("x + 3")("x − 2")) = "A"/"x + 3" + "B"/"x − 2"`
∴ 5 = A(x − 2) + B(x + 3) ....(i)
Putting x = 2 in (i), we get
5 = A (0) + B (5)
∴ 5 = 5B
∴ B = 1
Putting x = − 3 in (i), we get
5 = A(− 5) + B (0)
∴ 5 = − 5A
∴ A = − 1
∴ `5/(("x + 3")("x - 2")) = (-1)/"x + 3" + 1/"x − 2"`
∴ I = `int [1 + (-1)/"x + 3" + 1/"x − 2"]` dx
`= int "dx" - int 1/"x + 3" "dx" + int1/"x − 2"` dx
∴ I = x − log |x + 3| + log |x − 2| + c
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int (sinx)/(sin3x) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
`int x/((x - 1)^2 (x + 2)) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`