English

Integrate the following w.r.t. x : x2+x-1x2+x-6 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`

Sum

Solution

Let I = `int (x^2 + x - 1)/(x^2 + x - 6).dx`

= `int ((x^2 + x - 6) + 5)/(x^2 + x - 6).dx`

= `int [1 + (5)/(x^2 + x - 6)].dx`

= `int 1 dx + 5 int (1)/(x^2 + x - 6).dx`

Let `(1)/(x^2 + x - 6)`

= `(1)/((x + 3)(x - 2)`

= `"A"/(x + 3) + "B"/(x- 2)`

∴ 1 = A(x – 2) + B(x + 3)
Put x 3 = 0, i.e. x = –3, we get
1 = A(– 5) + B(0)

∴ A = `(-1)/(5)`
Put x – 2 = 0, i.e. x = 2, we get
1 = A(0) + B(5)
∴ B = `(1)/(5)`

∴ `(1)/(x^2 + x - 6) = ((-1/5))/(x + 3) + ((1/5))/(x - 2)`

∴ I = `int 1 dx + 5 int [((-1/5))/(x + 3) + ((1/5))/(x - 2)].dx`

= `int 1 dx - int (1)/(x + 3).dx + int (1)/(x - 2).dx`

= x – log|x + 3| + log|x – 2| + c

= `x + log|(x - 2)/(x + 3)| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.4 [Page 145]

APPEARS IN

RELATED QUESTIONS

Find : `int x^2/(x^4+x^2-2) dx`


Evaluate:

`int x^2/(x^4+x^2-2)dx`


Find: `I=intdx/(sinx+sin2x)`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`(2x - 3)/((x^2 -1)(2x + 3))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`(3x -1)/(x + 2)^2`


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `2^x/(4^x - 3 * 2^x - 4`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`


Choose the correct options from the given alternatives :

If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`


`int x^7/(1 + x^4)^2  "d"x`


`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int ("d"x)/(x^3 - 1)`


Evaluate:

`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


State whether the following statement is True or False:

For `int (x - 1)/(x + 1)^3  "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2


`int x/((x - 1)^2 (x + 2)) "d"x`


`int 1/(4x^2 - 20x + 17)  "d"x`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (x^2"d"x)/(x^4 - x^2 - 12)`


Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


`int 1/(x^2 + 1)^2 dx` = ______.


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int(2x^3 - 1)/(x^4 + x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×