Advertisements
Advertisements
Question
Integrate the rational function:
`(3x + 5)/(x^3 - x^2 - x + 1)`
Solution
Let `(3x + 5)/(x^3 - x^2 - x + 1)`
`= (3x + 5)/(x^2(x - 1) - 1(x - 1))`
`= (3x + 5)/((x^2 - 1)(x - 1))`
`= (3x + 5)/((x + 1)(x - 1)^2)`
`(3x + 5)/((x + 1)(x - 1)^2) = A/(x + 1) = B/(x - 1) + C/((x - 1)^2)`
3x + 5 = A(x - 1)2 + B(x2 - 1) + C(x + 1) ... (i)
Put x = 1
8 = 0 + 0 + 2C
⇒ C = 4
Put x = -1
2 = A(-2)2 + 0 = 0
⇒ A = `-1/2`
On comparing the coefficients of x2
0 = A + B
⇒ A = -A `= 1/2`
Hence, `(3x + 5)/(x^3 - x^2 - x + 1)`
`= -1/(2(x + 1)) + 1/(2(x - 1)) + 4/((x - 1)^2)`
On integrating,
`int (3x + 5)/(x^3 - x^2 - x + 1)`
`= -1/2 int 1/(x + 1) dx + 1/2 int 1/(x - 1) dx + 4 int 1/((x - 1)^2) dx`
`= -1/2 log abs (x + 1) + 1/2 log (x - 1) + 4 (1/((x - 1))) + C`
`= 1/2 log abs ((x + 1)/(x - 1)) - 4/((x - 1)) + C`
APPEARS IN
RELATED QUESTIONS
Find : `int x^2/(x^4+x^2-2) dx`
Find: `I=intdx/(sinx+sin2x)`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`x/((x-1)(x- 2)(x - 3))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the rational function:
`1/(x(x^4 - 1))`
`int (xdx)/((x - 1)(x - 2))` equals:
`int (dx)/(x(x^2 + 1))` equals:
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int "dx"/(("x" - 8)("x" + 7))`=
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int x^7/(1 + x^4)^2 "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int x sin2x cos5x "d"x`
`int ("d"x)/(x^3 - 1)`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`