English

∫dxx(x2+1) equals: - Mathematics

Advertisements
Advertisements

Question

`int (dx)/(x(x^2 + 1))` equals:

Options

  • `log |x| - 1/2 log |x^2 + 1| + C`

  • `log |x| + 1/2 log |x^2 + 1| + C`

  • `- log |x| + 1/2 log |x^2 + 1| + C`

  • `1/2 log |x| + log (x^2 + 1) + C`

MCQ

Solution

`log |x| - 1/2 log |x^2 + 1| + C`

Explanation:

Let `I = int dx/(x (x^2 + 1))`

`= int x/(x (x^2 + 1))  dx`

Put x2 = t

2x dx = dt

`I = 1/2 int (2x  dx)/(x (x^2 + 1))`

`= 1/2 int dt/(t (t + 1))`

Now, `1/(t (t + 1)) = A/t + B/(t + 1)`

1 = A(t + 1) + Bt

Putting t = 0, 1 = A

∴ A = 1

Putting t = -1, 1 = B(-1)

∴ B = -1

`therefore 1/(t (t + 1)) = 1/t - 1/(t + 1)`

`therefore 1/2 int 1/(t (t + 1))  dt = 1/2 int 1/t dt - 1/2 int 1/(t + 1)  dt`

`= 1/2  log abs t - 1/2  log abs (t + 1) + C`

`= 1/2  log abs (x ^2) - 1/2  log abs(x ^2 + 1) + C`

`= log abs x - 1/2  log abs(x^2 + 1) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.5 [Page 323]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.5 | Q 23 | Page 323

RELATED QUESTIONS

Evaluate:

`int x^2/(x^4+x^2-2)dx`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`


Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`


Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Evaluate: `int ("x"^2 + "x" - 1)/("x"^2 + "x" - 6)` dx


`int "dx"/(("x" - 8)("x" + 7))`=


Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int (2x - 7)/sqrt(4x- 1) dx`


`int sqrt((9 + x)/(9 - x))  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^x ((1 + x^2))/(1 + x)^2  "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int x sin2x cos5x  "d"x`


`int xcos^3x  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


Evaluate the following:

`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


`int 1/(x^2 + 1)^2 dx` = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×