Advertisements
Advertisements
Question
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
Solution
Let I = `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
We perform actual division and express the result as:
`"Dividend"/"Divisor" = "Quotient" + "Remainder"/"Divisor"`
x - 1
`2"x"^2 - "x" - 10)overline(2"x"^3 - 3"x"^2 - 9"x" + 1)`
`2"x"^3 - "x"^2 - 10"x"`
(-) (+) (+)
`- 2"x"^2 + "x" + 1`
`- 2"x"^2 + "x" + 10`
(+) (-) (-)
- 9
∴ I = `int("x - 1" + (-9)/(2"x"^2 - "x" - 10))` dx
`= int "x" * "dx" - int 1 * "dx" - 9 int 1/(2"x"^2 - "x" - 10) "dx"`
Here 2x2 - x - 10
`= 2("x"^2 + 1/2"x" + 1/16 - 5 - 1/16)`
`= 2 [("x" - 1/4)^2 - 81/16]`
∴ I = `int "x" * "dx" - int 1 * "dx" - 9/2 int 1/(("x" - 1/4)^2 - (9/4)^2)`dx
`= "x"^2/2 - "x" - 9/2 * 1/(2 (9/4)) log |("x" - 1/4 - 9/4)/("x" - 1/4 + 9/4)| + "c"_1`
`= "x"^2/2 - "x" - log |("x" -5/2)/("x + 2")| + "c"_1`
`= "x"^2/2 - "x" - log|("2x" - 5)/(2("x + 2"))| + "c"_1`
`= "x"^2/2 - "x" + log|(2("x + 2"))/("2x" - 5)| + "c"_1`
`= "x"^2/2 - "x" + log |("x + 2")/("2x - 5")| + log 2 + "c"_1`
∴ I = `"x"^2/2 - "x" + log|("x + 2")/("2x - 5")| + "c" "where" "c" = "c"_1 + log 2`
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
`int (dx)/(x(x^2 + 1))` equals:
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
`int sin(logx) "d"x`
`int ("d"x)/(2 + 3tanx)`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.