Advertisements
Advertisements
Question
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
Solution
Let I = `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`= int ("3x" - 1)/(("x - 1")("2x + 1"))` dx
Let `(3"x" - 1)/(("x - 1")("2x" + 1)) = "A"/"x - 1" + "B"/"2x + 1"`
∴ 3x - 1 = A(2x + 1) + B(x - 1) ...(i)
Putting x = 1 in (i), we get
3(1) - 1 = A(2 + 1) + B(0)
∴ 2 = 3A
∴ A = `2/3`
Putting x = `- 1/2` in (i), we get
`3(- 1/2) - 1 = "A"(0) + "B"[- 1/2 - 1]`
∴ `- 5/2 = "B" (- 3/2)`
∴ B = `5/3`
∴ `(3"x" - 1)/(("x" - 1)("2x" + 1)) = (2/3)/("x - 1") + (5/3)/("2x + 1")`
∴ I = `int ((2/3)/("x - 1") + (5/3)/("2x" + 1))` dx
`= 2/3 int 1/("x - 1") "dx" + 5/3 int 1/("2x + 1")`dx
∴ I = `2/3 log |"x - 1"| + 5/3 (log |("2x" + 1)|)/2` + c
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int sqrt((9 + x)/(9 - x)) "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`
Evaluate:
`int(2x^3 - 1)/(x^4 + x)dx`