Advertisements
Advertisements
Question
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
Solution
Let I = `int sqrt(x^2 − 8x + 7)` dx
`"I" = int sqrt(x^2 − 8x + 16 − 9)` dx
`"I" = int sqrt((x^2 − 8x + 16) − 9)` dx
`"I" = int sqrt((x − 4)^2 − (3)^2)` dx
∴ `int sqrt(x^2 − a^2) "dx" = x/2 sqrt(x^2 − a^2) − a^2/2 log |x + sqrt(x^2 − a^2)| + c`
`"I" = (x − 4)/2 sqrt((x - 4)^2 − (3)^2) − (3)^2/2log |(x − 4) + sqrt((x − 4)^2 − (3)^2)| + c`
`"I" = (x − 4)/2 sqrt(x^2 − 8x + 7) − 9/2 log |(x − 4) + sqrt(x^2 − 8x + 7)| + c`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Write a value of
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
`int 1/(cos x - sin x)` dx = _______________
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int sin^-1 x`dx = ?
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`