Advertisements
Advertisements
प्रश्न
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
उत्तर
Let I = `int sqrt(x^2 − 8x + 7)` dx
`"I" = int sqrt(x^2 − 8x + 16 − 9)` dx
`"I" = int sqrt((x^2 − 8x + 16) − 9)` dx
`"I" = int sqrt((x − 4)^2 − (3)^2)` dx
∴ `int sqrt(x^2 − a^2) "dx" = x/2 sqrt(x^2 − a^2) − a^2/2 log |x + sqrt(x^2 − a^2)| + c`
`"I" = (x − 4)/2 sqrt((x - 4)^2 − (3)^2) − (3)^2/2log |(x − 4) + sqrt((x − 4)^2 − (3)^2)| + c`
`"I" = (x − 4)/2 sqrt(x^2 − 8x + 7) − 9/2 log |(x − 4) + sqrt(x^2 − 8x + 7)| + c`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(x + x log x)`
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int(log(logx))/x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int dx/(1 + e^-x)` = ______
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
`int x^3 e^(x^2) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)