Advertisements
Advertisements
प्रश्न
उत्तर
\[\int e^x \left( \tan x + 1 \right) \text{ sec x dx} = \int e^x \left( \tan x\sec x + \sec x \right) dx\]
\[ = \int e^x \left( \sec x + \tan x\sec x \right) dx\]
\[\text{ Consider}, f\left( x \right) = \sec x,\text{ then f}^{ ' } \left( x \right) = \tan x\sec x\]
\[\text{ Thus , the given integrand is of the form e}^x \left[ f\left( x \right) + f^{ '} \left( x \right) \right] . \]
\[\text{ Therefore,} \int e^x \left( \tan x + 1 \right) \text{ sec x dx} = \sec x \text{ e}^x + C\]
\[\text{ Hence,} f\left( x \right) = \sec x .\]
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate `int "x - 1"/sqrt("x + 4")` dx
`int (sin4x)/(cos 2x) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int (7x + 9)^13 "d"x` ______ + c
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int1/(x^2+4x-5)dx`