मराठी

I F ∫ E X ( Tan X + 1 ) Sec X D X = E X F ( X ) + C , T H E N W R I T E T H E V a L U E \Of F ( X ) . - Mathematics

Advertisements
Advertisements

प्रश्न

\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 

बेरीज

उत्तर

\[\int e^x \left( \tan x + 1 \right) \text{ sec  x  dx} = \int e^x \left( \tan x\sec x + \sec x \right) dx\]
\[ = \int e^x \left( \sec x + \tan x\sec x \right) dx\]
\[\text{ Consider}, f\left( x \right) = \sec x,\text{  then f}^{ ' } \left( x \right) = \tan x\sec x\]
\[\text{ Thus , the  given  integrand  is  of  the  form e}^x \left[ f\left( x \right) + f^{ '} \left( x \right) \right] . \]
\[\text{ Therefore,} \int e^x \left( \tan x + 1 \right) \text{ sec  x  dx} = \sec x \text{ e}^x + C\]
\[\text{ Hence,} f\left( x \right) = \sec x .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Very Short Answers | Q 57 | पृष्ठ १९८

संबंधित प्रश्‍न

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`(1+ log x)^2/x`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int logx/x  "d"x`


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×