Advertisements
Advertisements
प्रश्न
उत्तर
\[\int e^x \left( \tan x + 1 \right) \text{ sec x dx} = \int e^x \left( \tan x\sec x + \sec x \right) dx\]
\[ = \int e^x \left( \sec x + \tan x\sec x \right) dx\]
\[\text{ Consider}, f\left( x \right) = \sec x,\text{ then f}^{ ' } \left( x \right) = \tan x\sec x\]
\[\text{ Thus , the given integrand is of the form e}^x \left[ f\left( x \right) + f^{ '} \left( x \right) \right] . \]
\[\text{ Therefore,} \int e^x \left( \tan x + 1 \right) \text{ sec x dx} = \sec x \text{ e}^x + C\]
\[\text{ Hence,} f\left( x \right) = \sec x .\]
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int logx/x "d"x`
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`