Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
उत्तर
Let I = `int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Let 7x + 3 = `A[d/dx(3 + 2x - x^2)] + B`
= A(2 – 2x) + B
∴ 7x + 3 = -2Ax + (2A + B)
Comparing the coefficient of x and constant on both the sides, we get
– 2A = 7 and 2A + B = 3
∴ A = `(-7)/(2) and 2(-7/2) + "B" ` = 3
∴ B = 10
∴ 7x + 3 = `(-7)/(2)(2 - 2x) + 10`
∴ I = `int ((-7)/(2)(2 - 2x) + 10)/sqrt(3 + 2x - x^2).dx`
= `(-7)/(2) int ((2 - 2x))/sqrt(3 + 2x - x^2).dx + 10 int(1)/sqrt(3 + 2x - x^2)x`
= `(-7)/(2)"I"_1 + 10"I"_2`
In I1, put 3 + 2x – x2 = t
∴ (2 – 2x)dx = dt
∴ I1 = `int (1)/sqrt(t)dt`
= `int t^(-1/2) dt`
= `t^(1/2)/(1/2) + c_1`
= `2sqrt(3 + 2x - x^2) + c_1`
I2 = `int (1)/sqrt(3 - (x^2 - 2x + 1) + 1).dx`
= `int (1)/sqrt((2)^2 - (x - 1)^2).dx`
= `sin^-1((x - 1)/2) + c_2`
∴ I = `-7sqrt(3 + 2x - x^2) + 10sin^-1((x - 1)/2) + c`, where c = c1 + c2
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
sec2(7 – 4x)
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
`int logx/x "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int x^3"e"^(x^2) "d"x`
`int sin^-1 x`dx = ?
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int (cos x)/(1 - sin x) "dx" =` ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int cos^3x dx` = ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
`int secx/(secx - tanx)dx` equals ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`