Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
उत्तर
Let I = `int (sin6x)/(sin 10x sin 4x).dx`
= `int (sin (10x - 4x))/(sin 10x sin 4x).dx`
= `int (sin 10x cos 4x - cos 10x sin 4x)/(sin 10x sin 4x).dx`
= `int [(sin 10x cos 4x)/(sin 10x sin 4x) - (cos 10x sin 4x)/(sin 10x sin 4x)].dx`
= `int cot 4x dx - int cot 10x dx`
= `(1)/(4)log|sin4x| - (1)/(10)log|sin 10x| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`int sqrt(1 + "x"^2) "dx"` =
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int 1/(cos x - sin x)` dx = _______________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int cos^3x dx` = ______.
`int (logx)^2/x dx` = ______.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int1/(x(x - 1))dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`