Advertisements
Advertisements
प्रश्न
`int sqrt(1 + "x"^2) "dx"` =
पर्याय
`"x"/2 sqrt(1 + "x"^2) + 1/2 log ("x" + sqrt(1 + "x"^2))`+ c
`2/3 (1 + "x"^2)^(3/2) + "c"`
`1/3 (1 + "x"^2)` + c
`("(x)")/sqrt(1 + "x"^2)` + c
उत्तर
`"x"/2 sqrt(1 + "x"^2) + 1/2 log ("x" + sqrt(1 + "x"^2))`+ c
Explanation:
∵ `int sqrt(a^2 + "x"^2) "dx"` = `x/2 sqrt(a^2 + x^2) + a^2/2 log | x + sqrt(a^2 + x^2)| + c`
∴ I = `x/2 sqrt(1 + x^2) + 1/2 log |x + sqrt(1 + x^2) + c`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`cos sqrt(x)/sqrtx`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Solve: dy/dx = cos(x + y)
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).