Advertisements
Advertisements
प्रश्न
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
पर्याय
`(3)^("x"^3) + "c"`
`(3)^("x"^3)/(3 * log 3) + "c"`
`log 3 (3)^("x"^3)` + c
`"x"^2 (3)^("x"^3) + "c"`
उत्तर
`(3)^("x"^3)/(3 * log 3) + "c"`
Explanation:
Let I = `int "x"^2 * (3)^("x"^3) "dx"`
Put x3 = t
∴ `3"x"^2 "dx" = "dt"`
∴ `"x"^2 "dx" = 1/3 "dt"`
∴ I = `1/3 int 3^"t" * "dt"`
`= 1/3 * 3^"t"/log 3` + c
`= (3)^("x"^3)/(3 log 3)` + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`x/(9 - 4x^2)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int dx/(1 + e^-x)` = ______
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate `int 1/(x(x-1)) dx`