Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
उत्तर
Let I = `int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Put, Numerator = A(Denominator) + B[`d/dx`(Denominator)]
Let 3ex + 4 = A(2ex - 8) + B `"d"/"dx"`(2ex - 8)
= 2 Aex - 8A + B(2ex )
∴ 3ex + 4 = (2A + 2B)ex - 8A
Comparing the coefficients of ex and constant term on both sides, we get
2A + 2B = 3 and - 8A = 4
Solving these equations, we get
A = `- 1/2` and B = 2
∴ I = `int (- 1/2 (2"e"^"x" - 8) + 2(2"e"^"x"))/(2"e"^"x" - 8)`dx
`= - 1/2 int "dx" + 2 int ("2e"^"x")/(2"e"^"x" - 8)` dx
∴ I = `- 1/2"x" + 2log |2"e"^"x" - 8|` + c ...`[int ("f" '("x"))/("f" ("x")) "dx" = log |f ("x")| + "c"]`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int cos^7 x "d"x`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`