Advertisements
Advertisements
प्रश्न
Evaluate: `int 1/(x(x-1)) dx`
उत्तर
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int cos^2x.dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(1 + sin2x) "d"x`
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int x^x (1 + logx) "d"x`
`int cos^7 x "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int sin^-1 x`dx = ?
`int dx/(1 + e^-x)` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Find `int dx/sqrt(sin^3x cos(x - α))`.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`