मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate Integral 1/(X(X-1))Dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int 1/(x(x-1)) dx`

उत्तर

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2012-2013 (October)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

cot x log sin x


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


\[\int\sqrt{x - x^2} dx\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int cos^2x.dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t.x:

cos8xcotx


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(1 + sin2x)  "d"x`


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int x^x (1 + logx)  "d"x`


`int cos^7 x  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int sin^-1 x`dx = ?


`int dx/(1 + e^-x)` = ______


`int1/(4 + 3cos^2x)dx` = ______ 


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Find `int dx/sqrt(sin^3x cos(x - α))`.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×