मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Show that - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`

बेरीज

उत्तर

Let I = `int _0^(pi/4) "log"(1+"tan""x")"dx"`

= `int _0^(pi/4) "log"(1+ "tan""x")"dx"`

`=int _0^(pi/4) "log"{1+"tan"(pi/4-"x")} "dx"`

`(because int _0^"a" "f" ("x") "dx" int "f"("a" -"x")"dx")`

`=int _0^(pi/4)"log"{1+(("tan"pi/4 - "tan""x"))/(1+"tan"pi/4"tan""x")} "dx"`

`=int _0^(pi/4) "log"{1+(1-"tan""x")/(1+ "tan""x")} "dx"`

`=int _0^(pi/4) "log"{(1 + "tan""x" +1 -"tan""x")/(1 + "tan""x")}"dx"`

`=int _0^(pi/4) "log"(2/(1+"tan""x")) "dx"`

`=int _0^(pi/4) {"log" 2 -"log"(1+ "tan""x")} "dx"`

`=int _0^(pi/4) "log"2"dx" - int _0^(pi/4) "log" (1+"tan""x")"dx"`

`"I" = "log"2["x"]int _0^(pi/4) - "I"`

2I = `"log" 2 [pi/4-0]`

`"I" = pi/8 ."log"2`

` therefore int _0^(pi/4) "log"(1 +"tan""x")"dx" = pi/8"log"2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (February) Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


\[\int x \sin^3 x\ dx\]

Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t.x:

cos8xcotx


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int "e"^sqrt"x"` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int logx/x  "d"x`


`int cos^7 x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×