Advertisements
Advertisements
प्रश्न
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
उत्तर
Let I = `int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
= `int sqrt(("e"^(2x)("e"^x - 1))/("e"^x + 1)) "d"x`
= `int"e"^x sqrt(("e"^x - 1)/("e"^x + 1)) "d"x`
Put ex = t
∴ ex dx = dt
∴ I = `int sqrt(("t" - 1)/("t" + 1)) "dt"`
= `int sqrt(("t" - 1)/("t" + 1) xx ("t" - 1)/("t" - 1)) "dt"`
= `int ("t" - 1)/sqrt("t"^2 - 1) "dt"`
= `int ("t"/sqrt("t"^2 - 1) - 1/sqrt("t"^2 - 1)) "dt"`
= `int "t"/sqrt("t"^2 - 1) "dt" - int 1/sqrt("t"^2 - 1) "dt"`
= I1 − I2 .......(i)
I1 = `int "t"/sqrt("t"^2 - 1) "dt"`
Put t2 − 1 = a
∴ 2t dt = da
∴ I1 = `1/2 int "da"/sqrt("a")`
= `1/2 int "a"^(1/2) "da"`
= `1/2("a"^(1/2)/(1/2)) + "c"_1`
= `sqrt("a") + "c"_1`
= `sqrt("t"^2 - 1) + "c"_1`
∴ I1 = `sqrt("e"^(2x) - 1) + "c"_1` ......(ii)
I2 = `int 1/sqrt("t"^2 - 1^2) "dt"`
= `log|"t" + sqrt("t"^2 - 1^2)| + "c"_2`
∴ I2 = `log|"e"^x + sqrt("e"^(2x) - 1)| + "c"_2` .......(iiii)
From (i), (ii) and (iii), we get
I = `sqrt("e"^(2x) - 1) - log|"e"^x + sqrt("e"^(2x) - 1)| +"c"`,
where c = c1 − c2
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (3"x"^2 - 5)^2` dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int cos sqrtx` dx = _____________
`int (log x)/(log ex)^2` dx = _________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int cos^7 x "d"x`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int (cos x)/(1 - sin x) "dx" =` ______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int sec^6 x tan x "d"x` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int (logx)^2/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
`int x^3 e^(x^2) dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx sqrt(1 +x^2) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1)) dx`