मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

∫e3x-e2xex+1 dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`

बेरीज

उत्तर

Let I = `int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`

= `int sqrt(("e"^(2x)("e"^x - 1))/("e"^x + 1))  "d"x`

= `int"e"^x sqrt(("e"^x - 1)/("e"^x + 1))  "d"x`

Put ex = t

∴ ex dx = dt

∴ I = `int sqrt(("t" - 1)/("t" + 1))  "dt"`

= `int sqrt(("t" - 1)/("t" + 1) xx ("t" - 1)/("t" - 1))  "dt"`

= `int ("t" - 1)/sqrt("t"^2 - 1)  "dt"`

= `int ("t"/sqrt("t"^2 - 1) - 1/sqrt("t"^2 - 1))  "dt"`

= `int "t"/sqrt("t"^2 - 1)  "dt" - int  1/sqrt("t"^2 - 1)  "dt"`

= I1 − I2      .......(i)

I1 = `int "t"/sqrt("t"^2 - 1)  "dt"`

Put t2 − 1 = a

∴ 2t dt = da

I1 = `1/2 int "da"/sqrt("a")`

= `1/2 int "a"^(1/2) "da"`

= `1/2("a"^(1/2)/(1/2)) + "c"_1`

= `sqrt("a") + "c"_1`

= `sqrt("t"^2 - 1) + "c"_1`

I1 = `sqrt("e"^(2x) - 1) + "c"_1`    ......(ii)

I2 = `int 1/sqrt("t"^2 - 1^2)  "dt"`

= `log|"t" + sqrt("t"^2 - 1^2)| + "c"_2`

I2 = `log|"e"^x + sqrt("e"^(2x) - 1)| + "c"_2`  .......(iiii)

 From (i), (ii) and (iii), we get

I = `sqrt("e"^(2x) - 1) - log|"e"^x + sqrt("e"^(2x) - 1)| +"c"`,

 where c = c1 − c2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Indefinite Integration - Long Answers III

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate : `∫1/(3+2sinx+cosx)dx`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t.x:

cos8xcotx


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (3"x"^2 - 5)^2` dx


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int "x" * "e"^"2x"` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int cos sqrtx` dx = _____________


`int (log x)/(log ex)^2` dx = _________


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int cos^7 x  "d"x`


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int (cos x)/(1 - sin x) "dx" =` ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int sec^6 x tan x   "d"x` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int (logx)^2/x dx` = ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


`int secx/(secx - tanx)dx` equals ______.


Evaluate `int(1+ x + x^2/(2!)) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


`int x^3 e^(x^2) dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×