Advertisements
Advertisements
प्रश्न
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
उत्तर
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x5 + `underline((-5)/3)` x3 + 5x + c
Explanation:
`"I" = int (5(x^6 + 1))/(x^2 + 1) "dx"`
`"I" = 5 int ((x^2)^3 + (1)^3)/("x"^2 + 1) "dx"`
`"I" = 5int((cancel("x"^2 + 1))("x"^4 - "x"^2 + 1))/(cancel("x"^2 + 1)) "dx" ...[a^3 + b^3 = (a + b)(a^2 - ab + b^2)]`
`"I" = 5 int ("x"^4 - "x"^2 + 1)` dx
`"I" = 5 ("x"^5/5 - "x"^3/3 + "x") + c ...[int "x"^"n" "dx" = "x"^("n" + 1)/("n" + 1)]`
`"I" = "x"^5 - 5/3"x"^3 + 5"x"` + c
APPEARS IN
संबंधित प्रश्न
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int logx/x "d"x`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int1/(x(x-1))dx`