मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

∫logxx dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int logx/x  "d"x`

बेरीज

उत्तर

Put log x = t

∴ `1/x  "d"x` = dt

∴ `int logx/x  "d"x = int "t"  "dt"`

= `"t"^2/2 + "c"`

 `((log x)^2)/2 + "c"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Indefinite Integration - Very Short Answers

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


\[\int x \sin^3 x\ dx\]

Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : tan5x


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate `int "x - 1"/sqrt("x + 4")` dx


`int cos sqrtx` dx = _____________


`int sqrt(1 + sin2x)  "d"x`


`int (sin4x)/(cos 2x) "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int x^x (1 + logx)  "d"x`


`int cot^2x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


`int1/(4 + 3cos^2x)dx` = ______ 


`int(log(logx) + 1/(logx)^2)dx` = ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate `int 1/("x"("x" - 1)) "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×