मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : ∫13+2sinx-cosxdx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`

बेरीज

उत्तर

Let I = `int (1)/(3 + 2sin x - cosx)dx`

Put `tan(x/2)` = t
∴ x = 2 tan–1 t

∴ dx = `(2)/(1 + t^2)dt` and

sinx = `(2t)/(1 + t^2)' cosx = (1 - t^2)/(1 + t^2)`

∴ I = `int (1)/(3 + 2((2t)/(1 + t^2)) - ((1 - t^2)/(1 + t^2))).(2dt)/(1 + t^2)`

= `int (1 + t^2)/(3(1 + t^2) + 4t - (1 - t^2)).(2dt)/(1 + t^2)`

= `2 int dt/(4t^2 + 4t + 2)`

= `2 int dt/(4t^2 + 4t + 1 + 1)`

= `2 int dt/((2t + 1)^2 + 1^2)`

= `(2)/(2)tan^-1((2t + 1)/1) + c`

= `tan^-1[2tan^-1(x/2) + 1] + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (B) | Q 2.4 | पृष्ठ १२३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

cot x log sin x


Integrate the functions:

`1/(1 - tan x)`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int 1/(cos x - sin x)` dx = _______________


`int logx/x  "d"x`


`int cot^2x  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int (logx)^2/x dx` = ______.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×