Advertisements
Advertisements
प्रश्न
Evaluate `int "x - 1"/sqrt("x + 4")` dx
उत्तर
Let I = `int "x - 1"/sqrt("x + 4")` dx
= `int (("x + 4") - 5)/sqrt("x + 4")` dx
= `int (sqrt"x + 4" - 5/(sqrt "x + 4"))` dx
`= int [("x + 4")^(1/2) - 5("x + 4")^(- 1/2)]` dx
`= ("x + 4")^(3/2)/(3/2) - 5 ("x + 4")^(1/2)/(1/2)` + c
∴ I = `2/3 ("x + 4")^(3/2) - 10 sqrt("x + 4")` + c
APPEARS IN
संबंधित प्रश्न
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
`int(log(logx))/x "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int x^3"e"^(x^2) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`