Advertisements
Advertisements
प्रश्न
Integrate the following function w.r.t. x:
x9.sec2(x10)
Evaluate:
`intx^9 . sec^2 (x^10) dx`
उत्तर
Let I = `int x^9 .sec^2(x^10).dx`
Put x10 = t
∴ 10x9dx = dt
∴ x9dx = `(1)/(10)dt`
∴ I = `int sec^2t.dt/(10)`
= `1/10 int sec^2t dt`
= `(1)/(10)tan t+ c`
= `(1)/(10)tan(x^10) + c`
संबंधित प्रश्न
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
cot x log sin x
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int (7x + 9)^13 "d"x` ______ + c
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int dx/(1 + e^-x)` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
`int x^3 e^(x^2) dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`