मराठी

Integrate the functions: tan2(2x – 3) - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the functions:

tan2(2x – 3)

बेरीज

उत्तर

Let `I = int tan^2 (2x - 3) dx`

`= int [sec^2 (2x - 3) - 1]dx`

`= int sec^2 (2x - 3)dx - int 1 dx`

`= sec^2 (2x - 3) dx - x + C_1`

I = I1 - x + C1

Where, `I_1 = int sec^2 (2x - 3) dx.`

Put 2x - 3 = t

⇒ 2dx = dt

⇒ `I_1 = 1/2 int sec^2 t  dt`

⇒ `I_1 = 1/2 tan t + C_2`

`= 1/2 tan (2x - 3) + C_2`

`I = I_1 - x + C_1`

= `1/2 tan (2x - 3) - x + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.2 [पृष्ठ ३०५]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.2 | Q 21 | पृष्ठ ३०५

संबंधित प्रश्‍न

Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`(1+ log x)^2/x`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int x \sin^3 x\ dx\]

Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int 1/("x" ("x" - 1))` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Evaluate: ∫ |x| dx if x < 0


`int 1/(cos x - sin x)` dx = _______________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int (log x)/(log ex)^2` dx = _________


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int 1/(xsin^2(logx))  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


If f'(x) = `x + 1/x`, then f(x) is ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int (logx)^2/x dx` = ______.


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×