Advertisements
Advertisements
प्रश्न
Integrate the functions:
tan2(2x – 3)
उत्तर
Let `I = int tan^2 (2x - 3) dx`
`= int [sec^2 (2x - 3) - 1]dx`
`= int sec^2 (2x - 3)dx - int 1 dx`
`= sec^2 (2x - 3) dx - x + C_1`
I = I1 - x + C1
Where, `I_1 = int sec^2 (2x - 3) dx.`
Put 2x - 3 = t
⇒ 2dx = dt
⇒ `I_1 = 1/2 int sec^2 t dt`
⇒ `I_1 = 1/2 tan t + C_2`
`= 1/2 tan (2x - 3) + C_2`
`I = I_1 - x + C_1`
= `1/2 tan (2x - 3) - x + C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int 1/("x" ("x" - 1))` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate: ∫ |x| dx if x < 0
`int 1/(cos x - sin x)` dx = _______________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int (log x)/(log ex)^2` dx = _________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int 1/(xsin^2(logx)) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
If f'(x) = `x + 1/x`, then f(x) is ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int (logx)^2/x dx` = ______.
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`