Advertisements
Advertisements
प्रश्न
`int (log x)/(log ex)^2` dx = _________
पर्याय
x (1 + log x) + c
`x/(1 + log x) + "c"`
`1/(1 + log x) + "c"`
`1/(1 - log x) + "c"`
उत्तर
`x/(1 + log x) + "c"`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
cot x log sin x
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate: `int 1/(x(x-1)) dx`
Solve: dy/dx = cos(x + y)
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
`int logx/(log ex)^2*dx` = ______.
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Write `int cotx dx`.
`int (logx)^2/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`int sin^2(x/2)dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`