मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

∫logx(logex)2 dx = ________________ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int (log x)/(log ex)^2` dx = _________

पर्याय

  • x (1 + log x) + c

  • `x/(1 + log x) + "c"`

  • `1/(1 + log x) + "c"`

  • `1/(1 - log x) + "c"`

MCQ
रिकाम्या जागा भरा

उत्तर

`x/(1 + log x) + "c"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Indefinite Integration - MCQ

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

cot x log sin x


Integrate the functions:

`(1+ log x)^2/x`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate: `int 1/(x(x-1)) dx`


Solve: dy/dx = cos(x + y)


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


Write `int cotx  dx`.


`int (logx)^2/x dx` = ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


`int secx/(secx - tanx)dx` equals ______.


Evaluate `int(1+ x + x^2/(2!)) dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^2(x/2)dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×