Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
पर्याय
True
False
उत्तर
True
Explanation:
Let I = ∫ x (xx)x (2 log x + 1) dx
Put `("x"^"x")^"x"` = t
Taking logarithm of both sides, we get
log `("x"^"x")^"x"` = log t
∴ `"x"^2 * log "x" = log "t"`
Differentiating w.r.t. x, we get
`"x"^2 * 1/"x" + (log "x") * "2x" = 1/"t" * "dt"/"dx"`
∴ `("x" + 2"x" log "x") "dx" = 1/"t" * "dt"`
∴ x(1 + 2 log x) dx = `1/"t" * "dt"`
∴ I = `int "t" * 1/"t" * "dt" = int 1 * "dt" = "t" + "c" = ("x"^"x")^"x"` + c
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
`int (log x)/(log ex)^2` dx = _________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int (cos x)/(1 - sin x) "dx" =` ______.
`int sec^6 x tan x "d"x` = ______.
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx