Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
उत्तर
Let I = `int x^5sqrt(a^2 + x^2).dx`
Put, a2 + x2 = t
∴ 2x dx = dt
∴ x dx = `(1)/(2)dt`
Also, x2 = t – a2
I = `int x^2. x^2sqrt(a^2 + x^2)x dx`
=` int(t - a^2)^2 sqrt(t). dt`
= `(1)/(2) int (t^2 - 2a^2t + a^4)sqrt(t). dt`
= `(1)/(2) int (t^(5/2) - 2a^2t^(3/2) + a^4t^(1/2))dt`
= `(1)/(2) int t^(5/2) dt - a^2 int t^(3/2) dt + a^4/2 int t^(1/2) dt`
= `(1)/(2). (t^(7/2))/((7/2)) - a^2. (t^(5/2))/((5/2)) + a^4/2.(t^(3/2))/((3/2) )+ c`
= `(1)/(7)(a^2 + x^2)^(7/2) - (2a^2)/(5)(a^2 + x^2)^(5/2) + a^4/(3)(a^2 + x^2)^(3/2) + c`
APPEARS IN
संबंधित प्रश्न
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int \log_e x\ dx\].
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Evaluate `int 1/("x" ("x" - 1))` dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int cos sqrtx` dx = _____________
`int x^x (1 + logx) "d"x`
`int(log(logx))/x "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`