मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x: x5a2+x2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`

बेरीज

उत्तर

Let I = `int x^5sqrt(a^2 + x^2).dx`

Put, a2 +  x2  = t

∴ 2x dx = dt

∴ x dx = `(1)/(2)dt`

Also, x2 = t – a2 

I = `int x^2. x^2sqrt(a^2 + x^2)x  dx`

=` int(t - a^2)^2 sqrt(t). dt`

= `(1)/(2) int (t^2 - 2a^2t + a^4)sqrt(t). dt`

= `(1)/(2) int (t^(5/2) - 2a^2t^(3/2) + a^4t^(1/2))dt`

= `(1)/(2) int t^(5/2) dt - a^2 int t^(3/2) dt + a^4/2 int t^(1/2) dt`

= `(1)/(2). (t^(7/2))/((7/2)) - a^2. (t^(5/2))/((5/2)) + a^4/2.(t^(3/2))/((3/2) )+ c`

= `(1)/(7)(a^2 + x^2)^(7/2) - (2a^2)/(5)(a^2 + x^2)^(5/2) + a^4/(3)(a^2 + x^2)^(3/2) + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (A) | Q 1.20 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Evaluate `int 1/("x" ("x" - 1))` dx


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int cos sqrtx` dx = _____________


`int x^x (1 + logx)  "d"x`


`int(log(logx))/x  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int secx/(secx - tanx)dx` equals ______.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×