Advertisements
Advertisements
प्रश्न
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
पर्याय
`1/3`
`1/2`
`1/4`
2
उत्तर
`1/4`
Explanation:
Let x + 2 = p `"d"/"dx" (2"x"^2 + 6"x" + 5) + "q"`
= p(4x + 6) + q
∴ x + 2 = 4px + 6p + q
∴ 4p = 1 and 6p + q = 2
∴ p = `1/4`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Write a value of
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate `int1/(x(x-1))dx`