मराठी

Evaluate : ∫1/(sin^4x+sin^2xcos^2x+cos^4x)dx - Mathematics

Advertisements
Advertisements

प्रश्न

 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

उत्तर

We need to evaluate `int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

`Let I=int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

Multiply the numerator and the denominator by sec4x, we have

`I=int(sec^4dx)/(tan^4x+tan^2x+1)`

`I=int(sec^2x xx sec^2x dx)/(tan^4s+tan^2x+1)`

Now substitute t=tanx;dt=sec2xdx

Therefore,

`I=int(1+t^2)/(t^4+t^2+1)dt`

`I=int(1+1/t^2)/(t^2+1/t^2+1)dt`

`I=int(1+1/t^2)/(t^2+1/t^2-2+2+1)dt`

`I=int(1+1/t^2)/((T-1/T)^2+3)dt`

Substitute `z=t-1/t; dz=(1+1/t^2)dt`

`I=int(dz)/(z^2+3)`

`I=int(dz)/(z^2+(sqrt3)^2)`

`I=1/sqrt3 tan^(-1)(z/sqrt3)+c`

`I=1/sqrt3tan^(-1)((t-1/t)/sqrt3)+c`

`I=1/sqrt3tan^(-1)((tanx-1/tanx)/sqrt3)+c`

`I=1/sqrt3tan^(-1)((tanx-cotx)/sqrt3)+c`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) All India Set 3

संबंधित प्रश्‍न

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


`int cos sqrtx` dx = _____________


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×