Advertisements
Advertisements
प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
उत्तर
We need to evaluate `int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
`Let I=int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Multiply the numerator and the denominator by sec4x, we have
`I=int(sec^4dx)/(tan^4x+tan^2x+1)`
`I=int(sec^2x xx sec^2x dx)/(tan^4s+tan^2x+1)`
Now substitute t=tanx;dt=sec2xdx
Therefore,
`I=int(1+t^2)/(t^4+t^2+1)dt`
`I=int(1+1/t^2)/(t^2+1/t^2+1)dt`
`I=int(1+1/t^2)/(t^2+1/t^2-2+2+1)dt`
`I=int(1+1/t^2)/((T-1/T)^2+3)dt`
Substitute `z=t-1/t; dz=(1+1/t^2)dt`
`I=int(dz)/(z^2+3)`
`I=int(dz)/(z^2+(sqrt3)^2)`
`I=1/sqrt3 tan^(-1)(z/sqrt3)+c`
`I=1/sqrt3tan^(-1)((t-1/t)/sqrt3)+c`
`I=1/sqrt3tan^(-1)((tanx-1/tanx)/sqrt3)+c`
`I=1/sqrt3tan^(-1)((tanx-cotx)/sqrt3)+c`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
`int cos sqrtx` dx = _____________
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`