Advertisements
Advertisements
प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
उत्तर
We need to evaluate `int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
`Let I=int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Multiply the numerator and the denominator by sec4x, we have
`I=int(sec^4dx)/(tan^4x+tan^2x+1)`
`I=int(sec^2x xx sec^2x dx)/(tan^4s+tan^2x+1)`
Now substitute t=tanx;dt=sec2xdx
Therefore,
`I=int(1+t^2)/(t^4+t^2+1)dt`
`I=int(1+1/t^2)/(t^2+1/t^2+1)dt`
`I=int(1+1/t^2)/(t^2+1/t^2-2+2+1)dt`
`I=int(1+1/t^2)/((T-1/T)^2+3)dt`
Substitute `z=t-1/t; dz=(1+1/t^2)dt`
`I=int(dz)/(z^2+3)`
`I=int(dz)/(z^2+(sqrt3)^2)`
`I=1/sqrt3 tan^(-1)(z/sqrt3)+c`
`I=1/sqrt3tan^(-1)((t-1/t)/sqrt3)+c`
`I=1/sqrt3tan^(-1)((tanx-1/tanx)/sqrt3)+c`
`I=1/sqrt3tan^(-1)((tanx-cotx)/sqrt3)+c`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Solve: dy/dx = cos(x + y)
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int 1/(x(x-1))dx`