Advertisements
Advertisements
प्रश्न
Evaluate: `int log ("x"^2 + "x")` dx
उत्तर
Let I = `int log ("x"^2 + "x")` dx
`= int log ("x"^2 + "x") * 1 * "dx"`
`= log ("x"^2 + "x") int 1 * "dx" - int {"d"/"dx" log ("x"^2 + "x") int 1 * "dx"}`dx
`= log ("x"^2 + "x") * "x" - int 1/("x"^2 + "x") * (2"x" + 1) * "x" * "dx"`
`= "x" * log ("x"^2 + "x") - int 1/("x"("x + 1")) * (2"x" + 1) * "x" * "dx"`
`= "x" * log ("x"^2 + "x") - int("2x + 1")/("x + 1")`dx
`= "x" * log ("x"^2 + "x") - int((2"x" + 2) - 1)/("x + 1")` dx
`= "x" * log ("x"^2 + "x") - int[(2("x + 1"))/("x + 1") - 1/("x + 1")]` dx
`= "x" * log ("x"^2 + "x") - int[2 - 1/"x + 1"]` dx
`= "x" * [log("x"^2 + "x")] - (2"x" - log |"x + 1"|) + "c"`
∴ I = `"x" * [log("x"^2 + "x")] - 2"x" + log |"x + 1"|` + c
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
sec2(7 – 4x)
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate the following integrals : `int sin 4x cos 3x dx`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
The value of `intsinx/(sinx - cosx)dx` equals ______.
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
`int x^3 e^(x^2) dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`