हिंदी

Evaluate: ∫log(x2+x) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int log ("x"^2 + "x")` dx

योग

उत्तर

Let I = `int log ("x"^2 + "x")` dx

`= int log ("x"^2 + "x") * 1 * "dx"`

`= log ("x"^2 + "x") int 1 * "dx" - int {"d"/"dx" log ("x"^2 + "x") int 1 * "dx"}`dx

`= log ("x"^2 + "x") * "x" - int 1/("x"^2 + "x") * (2"x" + 1) * "x" * "dx"`

`= "x" * log ("x"^2 + "x") - int 1/("x"("x + 1")) * (2"x" + 1) * "x" * "dx"`

`= "x" * log ("x"^2 + "x") - int("2x + 1")/("x + 1")`dx

`= "x" * log ("x"^2 + "x") - int((2"x" + 2) - 1)/("x + 1")` dx

`= "x" * log ("x"^2 + "x") - int[(2("x + 1"))/("x + 1") - 1/("x + 1")]` dx

`= "x" * log ("x"^2 + "x") - int[2 - 1/"x + 1"]` dx

`= "x" * [log("x"^2 + "x")] - (2"x" - log |"x + 1"|) + "c"`

∴ I = `"x" * [log("x"^2 + "x")] - 2"x" + log |"x + 1"|` + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Integration - MISCELLANEOUS EXERCISE - 5 [पृष्ठ १३९]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 5 Integration
MISCELLANEOUS EXERCISE - 5 | Q IV. 4) iv) | पृष्ठ १३९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×