हिंदी

Evaluate the following integrals : ∫x-7x-9.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`

योग

उत्तर

Let I = `int sqrt((x - 7)/(x - 9)).dx`

= `int sqrt((x - 7)/(x - 9) xx (x - 7)/(x - 7)).dx`

= `int sqrt((x - 7)^2/(x^2 - 16x + 63)).dx`

= `int (x - 7)/sqrt(x^2 - 16x + 63).dx`

Let x – 7 = `"A"[d/dx(x^2 - 16x + 63)] + "B"`

= A(2x – 16) + B
= 2Ax + (B – 16A)
Comparing the coefficient of x and constant term on both sides, we get
2A = 1

∴ A = `(1)/(2)` and

B – 16A = – 7

∴ `"B" - 16(1/2)` = – 7
∴ B = 1
∴ x – 7 = `(1)/(2)(2x - 16) + 1`

∴ I = `int (1/2(2x - 16) + 1)/sqrt(x^2 - 16x + 63).dx`

 = `(1)/(2) int (2x - 16)/sqrt(x^2 - 16x + 63).dx + int (1)/sqrt(x^2 - 16x + 63).dx`

= `(1)/(2)"I"_1 + "I"_2`

In I1, put x2 – 16x + 63 = t

∴ (2x – 16)dx = dt

∴ I1 = `(1)/(2) int (1)/sqrt(t)dt`

= `(1)/(2) int t^(-1/2)dt`

= `(1)/(2) t^(1/2)/((1/2)) + c_1`

= `sqrt(x^2 - 16x + 63) + c_1`

I2 = `int (1)/sqrt(x^2 - 16x + 63).dx`

= `int (1)/sqrt((x - 8)^2 - 1^2).dx`

= `log|x - 8 + sqrt((x - 8)^2 - 1^2)| + c_2`

= `log|x  - 8 + sqrt(x^2 - 16x + 63)| + c_2`

∴ I = `sqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`,, where c = c1 + c2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.6 | पृष्ठ १२८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


\[\int x \sin^3 x\ dx\]

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int sqrt(1 + sin2x)  "d"x`


`int (sin4x)/(cos 2x) "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int dx/(1 + e^-x)` = ______


The value of `intsinx/(sinx - cosx)dx` equals ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int cos^3x  dx` = ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


`int secx/(secx - tanx)dx` equals ______.


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate `int (1+x+x^2/(2!)) dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int1/(x(x-1))dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×