Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
उत्तर
Let I = `int sqrt((x - 7)/(x - 9)).dx`
= `int sqrt((x - 7)/(x - 9) xx (x - 7)/(x - 7)).dx`
= `int sqrt((x - 7)^2/(x^2 - 16x + 63)).dx`
= `int (x - 7)/sqrt(x^2 - 16x + 63).dx`
Let x – 7 = `"A"[d/dx(x^2 - 16x + 63)] + "B"`
= A(2x – 16) + B
= 2Ax + (B – 16A)
Comparing the coefficient of x and constant term on both sides, we get
2A = 1
∴ A = `(1)/(2)` and
B – 16A = – 7
∴ `"B" - 16(1/2)` = – 7
∴ B = 1
∴ x – 7 = `(1)/(2)(2x - 16) + 1`
∴ I = `int (1/2(2x - 16) + 1)/sqrt(x^2 - 16x + 63).dx`
= `(1)/(2) int (2x - 16)/sqrt(x^2 - 16x + 63).dx + int (1)/sqrt(x^2 - 16x + 63).dx`
= `(1)/(2)"I"_1 + "I"_2`
In I1, put x2 – 16x + 63 = t
∴ (2x – 16)dx = dt
∴ I1 = `(1)/(2) int (1)/sqrt(t)dt`
= `(1)/(2) int t^(-1/2)dt`
= `(1)/(2) t^(1/2)/((1/2)) + c_1`
= `sqrt(x^2 - 16x + 63) + c_1`
I2 = `int (1)/sqrt(x^2 - 16x + 63).dx`
= `int (1)/sqrt((x - 8)^2 - 1^2).dx`
= `log|x - 8 + sqrt((x - 8)^2 - 1^2)| + c_2`
= `log|x - 8 + sqrt(x^2 - 16x + 63)| + c_2`
∴ I = `sqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`,, where c = c1 + c2.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
The value of \[\int\frac{1}{x + x \log x} dx\] is
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int sqrt(1 + sin2x) "d"x`
`int (sin4x)/(cos 2x) "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int dx/(1 + e^-x)` = ______
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int cos^3x dx` = ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate `int (1+x+x^2/(2!)) dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int 1/(x(x-1)) dx`