Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
उत्तर
Let I = `int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Put x2 + 6x + 3 = t
∴ (2x + 6) dx = dt
∴ I = `int "dt"/sqrt"t"`
`= int "t"^((-1)/2)`dt
`= "t"^(1/2)/(1/2)` + c
`= 2 sqrt"t"` + c
∴ I = `2 sqrt("x"^2 + "6x" + 3)` + c
Alternate Method:
Let I = `int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
`"d"/"dx" ("x"^2 + "6x" + 3)` = 2x + 6
∴ I = `int ("d"/"dx" ("x"^2 + "6x" + 3))/(sqrt("x"^2 + 6"x" + 3))` dx
∴ I = `2 sqrt("x"^2 + "6x" + 3)` + c ....`[because int ("f" '("x"))/sqrt("f"("x")) "dx" = 2sqrt("f"("x")) + "c"]`
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
cot x log sin x
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Evaluate the following : `int sinx/(sin 3x).dx`
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int logx/x "d"x`
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate `int1/(x(x-1))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int1/(x(x-1))dx`