हिंदी

∫exx[x(logx)2+2logx] dx = ______________ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________

विकल्प

  • ex log x + c

  • ex (log x)2 + c

  • e2x log x + c

  • e2x (log x)2 + c

MCQ
रिक्त स्थान भरें

उत्तर

ex (log x)2 + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2.3: Indefinite Integration - MCQ

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`1/(1 + cot x)`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

The value of \[\int\frac{1}{x + x \log x} dx\] is


`int "dx"/(9"x"^2 + 1)= ______. `


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


`int sqrt(1 + "x"^2) "dx"` =


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int 1/(cos x - sin x)` dx = _______________


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int x^x (1 + logx)  "d"x`


`int x/(x + 2)  "d"x`


`int cos^7 x  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


`int x^3"e"^(x^2) "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int dx/(1 + e^-x)` = ______


`int1/(4 + 3cos^2x)dx` = ______ 


`int (cos x)/(1 - sin x) "dx" =` ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate `int (1+x+x^2/(2!)) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


`int "cosec"^4x  dx` = ______.


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int 1/(x(x-1))dx`


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×