Advertisements
Advertisements
प्रश्न
`int sqrt(x^2 + 2x + 5)` dx = ______________
विकल्प
`(x + 1) sqrt(x^2 + 2x + 5) + log [(x + 1) + sqrt(x^2 + 2x + 5)] + "c"`
`(x + 2) sqrt(x^2 + 2x + 5) + log [(x + 2) + sqrt(x^2 + 2x + 5)] + "c"`
`(("x" + 2)/2) sqrt(x^2 + 2x + 5) + 1/2 log [(x + 2) + sqrt(x^2 + 2x + 5)] + "c"`
`(("x" + 1)/2) sqrt(x^2 + 2x + 5) + 2 log [(x + 1) + sqrt(x^2 + 2x + 5)] + "c"`
उत्तर
`(("x" + 1)/2) sqrt(x^2 + 2x + 5) + 2 log [(x + 1) + sqrt(x^2 + 2x + 5)] + "c"`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int sqrt(1 + sin2x) "d"x`
`int (sin4x)/(cos 2x) "d"x`
`int logx/x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int x^3"e"^(x^2) "d"x`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int sec^6 x tan x "d"x` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int "cosec"^4x dx` = ______.
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`