Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
उत्तर
Let I = e3logx(x4 + 1)–1.dx
= `int e^(logx^3)/(x^4 + 1).dx`
= `int x^3/(x^4 + 1).dx` ...[∵ elogN = N]
= `(1)/(4) int(4x^3)/(x^4 + 1).dx`
= `(1)/(4) int(d/dx(x^4 + 1))/(x^4 + 1).dx`
= `(1)/(4)log|x^4 + 1| + c. ...[∵ int (f'(x))/f(x) dx = log|f(x)| + c]`
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: ∫ |x| dx if x < 0
`int x^2/sqrt(1 - x^6)` dx = ________________
`int cos sqrtx` dx = _____________
`int (cos2x)/(sin^2x) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int x^3"e"^(x^2) "d"x`
`int dx/(1 + e^-x)` = ______
`int sec^6 x tan x "d"x` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`