हिंदी

Integrate the following functions w.r.t. x : tanxsinx.cosx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`

योग

उत्तर

Let I = `int sqrt(tanx)/(sin x . cosx).dx`

Dividing numerator and denominator by cos2x, we get

I = `int(((sqrttanx)/(cos^2x)))/((sinx/cosx)).dx`

= `int (sqrt(tanx).sec^2x)/tanx.dx`

= `int sec^2x/sqrt(tanx).dx`

Put tan x = t
∴ sec2xdx = dt

∴ I = `int (1)/sqrt(t)dt`

= `int t^(-1/2) dt`

= `t^(1/2)/(1/2) + c`

= `2sqrt(t) + c`

= `2sqrt(tanx) + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (A) [पृष्ठ ११०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (A) | Q 1.13 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate :`intxlogxdx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

cot x log sin x


Integrate the functions:

`(1+ log x)^2/x`


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int ("d"x)/(x(x^4 + 1))` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Write `int cotx  dx`.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


`int x^3 e^(x^2) dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int1/(x(x-1))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×