Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
उत्तर
I = `intx/(4x^4 - 20x^2 - 3)dx`
= `intx/(4[(x^2)^2 - 5x^2 - 3/4])dx`
= `1/4intx/((x^2)^2 - 5x^2 - 3/4)dx`
Put x2 = t
diff. w.r.t x both sides,
2x = `(dt)/(dx)`
2x.dx = dt
`x.dx = 1/2 dt`
I = `1/4int(1/2.dt)/(t^2 - 5t - 3/4)`
I = `1/4. 1/2int 1/(t^2 - 5t - 3/4)dt`
add and subtract `(1/2 xx -5)^2 = 25/4`
I = `1/8int1/((t^2 - 5t + 25/4) - 3/4 - 25/4)dt`
= `1/8int1/((t - 5/2)^2 - 7)dt`
= `1/8int1/((t - 5/2)^2 - (sqrt7)^2)dt`
I = `1/8. 1/(2(sqrt7)). log(|(t - 5/2 - sqrt7)/(t - 5/2 + sqrt7)|) + c`
= `1/(16sqrt7) . log|((2t)/2 - 5/2 - (2sqrt7)/2)/((2t)/2 - 5/2 + (2sqrt7)/2)| + c`
= `1/(16sqrt7) . log|(2t - 5 - 2sqrt7)/(2t - 5 + 2sqrt7)| + c`
I = `1/(16sqrt7) . log|(2x^2 - 5 - 2sqrt7)/(2x^2 - 5 + 2sqrt7)| + c`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(log x)^2/x`
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int "x" * "e"^"2x"` dx
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`