Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
उत्तर
Let I = `int sqrt((9 - x)/x).dx`
= `int sqrt((9 - x)/x.(9 - x)/(9 - x)).dx`
= `int (9 - x)/sqrt(9x - x^2).dx`
Let 9 – x = `"A"[d/dx (9x - x^2)] + "B"`
= A(9 – 2x) + B
∴ 9 – x = (9A + B) – 2Ax
Comparing the coefficient of x and constant on both the sides, we get
– 2A = – 1 and 9A + B = 9
∴ `"A" = (1)/(2) and 9(1/2) + "B"` = 9
∴ B = `(9)/(2)`
∴ 9 – x = `(1)/(2)(9 - 2x) + (9)/(2)`
∴ I = `int (1/2(9 - 2x) + 9/2)/sqrt(9x - x^2).dx`
= `(1)/(2) int (9 - 2x)/sqrt(9x - x^2).dx + (9)/(2) int (1)/sqrt(9x - x^2).dx`
= `(1)/(2)"I"_1 + (9)/(2)"I"_2`
In I1, put 9x – x2 = t
∴ (9 – 2x)dx = dt
∴ I1 = `int (1)/sqrt(t)dt`
= `intt^(-1/2)dt`
= `t^(1/2)/(1/2) + c_1`
= `2sqrt(9x - x^2) + c_1`
I2 = `int(1)/sqrt(81/4 - (x^2 - 9x + 81/4)).dx`
= `int (1)/sqrt((9/2)^2 - (x - 9/2)^2).dx`
= `sin^-1((x - 9/2)/(9/2)) + c_2`
== `sin^-1((2x - 9)/9) + c_2`
∴ I = `sqrt(9x - x^2) + (9)/(2) sin^-1((2x - 9)/9) + c`, where c = c1 + c2.
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int logx/x "d"x`
`int (cos2x)/(sin^2x) "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int 1/(x(x-1))dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int1/(x(x - 1))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).