हिंदी

Evaluate the following integrals : ∫9-xx.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int sqrt((9 - x)/x).dx`

योग

उत्तर

 Let I = `int sqrt((9 - x)/x).dx`

= `int sqrt((9 - x)/x.(9 - x)/(9 - x)).dx`

= `int (9 - x)/sqrt(9x - x^2).dx`

Let 9 – x = `"A"[d/dx (9x - x^2)] + "B"`

= A(9 – 2x) + B
∴ 9 – x = (9A + B) – 2Ax
Comparing the coefficient of x and constant on both the sides, we get
– 2A = – 1 and 9A + B = 9

∴ `"A" = (1)/(2) and 9(1/2) + "B"` = 9

∴ B = `(9)/(2)`

∴ 9 – x = `(1)/(2)(9 - 2x) + (9)/(2)`

∴ I = `int (1/2(9 - 2x) + 9/2)/sqrt(9x - x^2).dx`

= `(1)/(2) int (9 - 2x)/sqrt(9x - x^2).dx + (9)/(2) int (1)/sqrt(9x - x^2).dx`

= `(1)/(2)"I"_1 + (9)/(2)"I"_2`

In I1, put 9x – x2 = t
∴ (9 – 2x)dx = dt

∴ I1 = `int (1)/sqrt(t)dt`

= `intt^(-1/2)dt`

= `t^(1/2)/(1/2) + c_1`

= `2sqrt(9x - x^2) + c_1`

I2 = `int(1)/sqrt(81/4 - (x^2 - 9x + 81/4)).dx`

= `int (1)/sqrt((9/2)^2 - (x - 9/2)^2).dx`

= `sin^-1((x - 9/2)/(9/2)) + c_2`

== `sin^-1((2x - 9)/9) + c_2`

∴ I = `sqrt(9x - x^2) + (9)/(2) sin^-1((2x - 9)/9) + c`, where c = c1 + c2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.7 | पृष्ठ १२८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Evaluate :`intxlogxdx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int logx/x  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate `int 1/(x(x-1))dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int1/(x(x - 1))dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×