Advertisements
Advertisements
प्रश्न
Integrate the functions:
`1/(x-sqrtx)`
उत्तर
Let `I = int 1/(x - sqrtx) dx`
`= int 1/(sqrt x - (sqrtx - 1)) dx`
Taking `sqrt x - 1 = t`
`1/(2 sqrt x) dx = dt`
or `1/sqrt x dx = 2 dt`
Hence, `I = int 1/2. 2 dt = 2 int1/t dt`
= 2 log t + C
`= 2 log (sqrtx - 1) = C`
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate: `int "x" * "e"^"2x"` dx
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate `int 1/(x(x-1))dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate the following.
`intx sqrt(1 +x^2) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1))dx`