Advertisements
Advertisements
प्रश्न
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
उत्तर
Let I = `int x/ (sqrt( x + 4)) dx`
Put x + 4 = t
⇒ dx = dt . Also, x = t - 4
∴ `I = int (t - 4)/sqrtt dt`
`= int (t^(1/2) - 4t^ (-1/2)) dt`
`= 2/3 t^(3/2) -4 xx 2t^(1/2) + C`
`= 2/3 (x + 4)^(3/2) - 8 (x + 4)^(1/2) + C`
`= 2/3 (x + 4)^(1/2) [x + 4 - 12] + C`
`= 2/3 (x + 4)^(1/2) (x - 8) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int \log_e x\ dx\].
Write a value of
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: `int "e"^sqrt"x"` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int 1/(sinx.cos^2x)dx` = ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1)) dx`