Advertisements
Advertisements
प्रश्न
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
उत्तर
\[\text{ Let I }= \int\frac{dx}{1 + e^x}\]
\[\text{ Dividing numerator and denominator by e}^x \]
\[ \Rightarrow I = \int\frac{\frac{1}{e^x}\text{ dx}}{\frac{1}{e^x} + 1}\]
\[ = \int\frac{e^{- x}\text{ dx}}{e^{- x} + 1}\]
\[\text{ Let e}^{- x} + 1 = t\]
\[ - e^{- x} dx = dt\]
\[ \Rightarrow e^{- x} dx = - dt\]
\[ \therefore I = \int - \frac{dt}{t}\]
\[ = - \text{ log }\left| t \right| + C\]
\[ = - \text{ log }\left| 1 + e^x \right| + C \left( \because t = 1 + e^x \right)\]
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate `int (5"x" + 1)^(4/9)` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int (cos2x)/(sin^2x) "d"x`
`int cot^2x "d"x`
`int x/(x + 2) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int1/(4 + 3cos^2x)dx` = ______
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int cos^3x dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`