Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
उत्तर
Let I = `int 1/(sqrt"x" + "x")` dx
= `int 1/(sqrt"x" (1 + sqrt"x"))`dx
Put `1 + sqrt"x" = "t"`
∴ `1/(2sqrt"x") "dx" = "dt"`
∴ `1/sqrt"x"`dx = 2 dt
∴ I = `int (2 * "dt")/"t"`
`= 2 int 1/"t" * "dt"`
= 2 log | t | + c
∴ I = 2 log `|1 + sqrt"x"|` + c
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Write a value of
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`