Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
उत्तर
Let I = `int 1/(x(x^6 + 1))` dx
`= int x^5/(x^6(x^6 + 1))`dx
Put x6 = t
∴ 6x5 dx = dt
∴ `x^5 * dx = 1/6 * dt`
∴ I = `1/6 int dt/(t(t + 1))`
`= 1/6 int ((t + 1) - t)/(t(t + 1))` dt
`= 1/6 int (1/t - 1/(t + 1))` dt
= `1/6` [log | t | - log |t + 1|] + c
`= 1/6 log |t/(t + 1)|` + c
∴ I = `1/6 log |x^6/(x^6 + 1)|` + c
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`1/(1 + cot x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: `int "e"^sqrt"x"` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int sqrt(1 + sin2x) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int1/(4 + 3cos^2x)dx` = ______
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`